Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigating Proteome and Transcriptome Defense Response of Apples Induced by Yarrowia lipolytica.

Identifieur interne : 000084 ( Main/Exploration ); précédent : 000083; suivant : 000085

Investigating Proteome and Transcriptome Defense Response of Apples Induced by Yarrowia lipolytica.

Auteurs : Hongyin Zhang ; Liangliang Chen ; Yiwen Sun ; Lina Zhao ; Xiangfeng Zheng ; Qiya Yang ; Xiaoyun Zhang

Source :

RBID : pubmed:28398122

Descripteurs français

English descriptors

Abstract

A better understanding of the mode of action of postharvest biocontrol agents on fruit surfaces is critical for the advancement of successful implementation of postharvest biocontrol products. This is due to the increasing importance of biological control of postharvest diseases over chemical and other control methods. However, most of the mechanisms involved in biological control remain unknown and need to be explored. Yarrowia lipolytica significantly inhibited blue mold decay of apples caused by Penicillium expansum. The findings also demonstrated that Y. lipolytica stimulated the activities of polyphenoloxidase, peroxidase, chitinase, l-phenylalanine ammonia lyase involved in enhancing defense responses in apple fruit tissue. Proteomic and transcriptomic analysis revealed a total of 35 proteins identified as up- and down-regulated in response to the Y. lipolytica inducement. These proteins were related to defense, biotic stimulus, and stress responses, such as pathogenesis-related proteins and dehydrin. The analysis of the transcriptome results proved that the induced resistance was mediated by a crosstalk between salicylic acid (SA) and ethylene/jasmonate (ET/JA) pathways. Y. lipolytica treatment activated the expression of isochorismate synthase gene in the SA pathway, which up-regulates the expression of PR4 in apple. The expression of 1-aminocyclopropane-1-carboxylate oxidase gene and ET-responsive transcription factors 2 and 4, which are involved in the ET pathway, were also activated. In addition, cytochrome oxidase I, which plays an important role in JA signaling for resistance acquisition, was also activated. However, not all of the genes had a positive effect on the SA and ET/JA signal pathways. As transcriptional repressors in JA signaling, TIFY3B and TIFY11B were triggered by the yeast, but the gene expression levels were relatively low. Taken together, Y. lipolytica induced the SA and ET/JA signal mediating the defense pathways by stimulating defense response genes, such as peroxidase, thaumatin-like protein, and chitinase 4-like, which are involved in defense response in apple. [Formula: see text]

DOI: 10.1094/MPMI-09-16-0189-R
PubMed: 28398122


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Investigating Proteome and Transcriptome Defense Response of Apples Induced by Yarrowia lipolytica.</title>
<author>
<name sortKey="Zhang, Hongyin" sort="Zhang, Hongyin" uniqKey="Zhang H" first="Hongyin" last="Zhang">Hongyin Zhang</name>
<affiliation>
<nlm:affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</nlm:affiliation>
<wicri:noCountry code="subField">People's Republic of China; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Chen, Liangliang" sort="Chen, Liangliang" uniqKey="Chen L" first="Liangliang" last="Chen">Liangliang Chen</name>
<affiliation>
<nlm:affiliation>2 Institute of Life Sciences, Jiangsu University.</nlm:affiliation>
<wicri:noCountry code="subField">Jiangsu University</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yiwen" sort="Sun, Yiwen" uniqKey="Sun Y" first="Yiwen" last="Sun">Yiwen Sun</name>
<affiliation>
<nlm:affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</nlm:affiliation>
<wicri:noCountry code="subField">People's Republic of China; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Lina" sort="Zhao, Lina" uniqKey="Zhao L" first="Lina" last="Zhao">Lina Zhao</name>
<affiliation>
<nlm:affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</nlm:affiliation>
<wicri:noCountry code="subField">People's Republic of China; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Xiangfeng" sort="Zheng, Xiangfeng" uniqKey="Zheng X" first="Xiangfeng" last="Zheng">Xiangfeng Zheng</name>
<affiliation>
<nlm:affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</nlm:affiliation>
<wicri:noCountry code="subField">People's Republic of China; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Yang, Qiya" sort="Yang, Qiya" uniqKey="Yang Q" first="Qiya" last="Yang">Qiya Yang</name>
<affiliation>
<nlm:affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</nlm:affiliation>
<wicri:noCountry code="subField">People's Republic of China; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xiaoyun" sort="Zhang, Xiaoyun" uniqKey="Zhang X" first="Xiaoyun" last="Zhang">Xiaoyun Zhang</name>
<affiliation>
<nlm:affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</nlm:affiliation>
<wicri:noCountry code="subField">People's Republic of China; and</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28398122</idno>
<idno type="pmid">28398122</idno>
<idno type="doi">10.1094/MPMI-09-16-0189-R</idno>
<idno type="wicri:Area/Main/Corpus">000092</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000092</idno>
<idno type="wicri:Area/Main/Curation">000092</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000092</idno>
<idno type="wicri:Area/Main/Exploration">000092</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Investigating Proteome and Transcriptome Defense Response of Apples Induced by Yarrowia lipolytica.</title>
<author>
<name sortKey="Zhang, Hongyin" sort="Zhang, Hongyin" uniqKey="Zhang H" first="Hongyin" last="Zhang">Hongyin Zhang</name>
<affiliation>
<nlm:affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</nlm:affiliation>
<wicri:noCountry code="subField">People's Republic of China; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Chen, Liangliang" sort="Chen, Liangliang" uniqKey="Chen L" first="Liangliang" last="Chen">Liangliang Chen</name>
<affiliation>
<nlm:affiliation>2 Institute of Life Sciences, Jiangsu University.</nlm:affiliation>
<wicri:noCountry code="subField">Jiangsu University</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yiwen" sort="Sun, Yiwen" uniqKey="Sun Y" first="Yiwen" last="Sun">Yiwen Sun</name>
<affiliation>
<nlm:affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</nlm:affiliation>
<wicri:noCountry code="subField">People's Republic of China; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Lina" sort="Zhao, Lina" uniqKey="Zhao L" first="Lina" last="Zhao">Lina Zhao</name>
<affiliation>
<nlm:affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</nlm:affiliation>
<wicri:noCountry code="subField">People's Republic of China; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Xiangfeng" sort="Zheng, Xiangfeng" uniqKey="Zheng X" first="Xiangfeng" last="Zheng">Xiangfeng Zheng</name>
<affiliation>
<nlm:affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</nlm:affiliation>
<wicri:noCountry code="subField">People's Republic of China; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Yang, Qiya" sort="Yang, Qiya" uniqKey="Yang Q" first="Qiya" last="Yang">Qiya Yang</name>
<affiliation>
<nlm:affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</nlm:affiliation>
<wicri:noCountry code="subField">People's Republic of China; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xiaoyun" sort="Zhang, Xiaoyun" uniqKey="Zhang X" first="Xiaoyun" last="Zhang">Xiaoyun Zhang</name>
<affiliation>
<nlm:affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</nlm:affiliation>
<wicri:noCountry code="subField">People's Republic of China; and</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular plant-microbe interactions : MPMI</title>
<idno type="ISSN">0894-0282</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cyclopentanes (metabolism)</term>
<term>Electrophoresis, Gel, Two-Dimensional (MeSH)</term>
<term>Ethylenes (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Ontology (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Malus (enzymology)</term>
<term>Malus (genetics)</term>
<term>Malus (metabolism)</term>
<term>Malus (microbiology)</term>
<term>Models, Biological (MeSH)</term>
<term>Oxylipins (metabolism)</term>
<term>Penicillium (physiology)</term>
<term>Plant Proteins (metabolism)</term>
<term>Proteome (metabolism)</term>
<term>Salicylic Acid (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcriptome (genetics)</term>
<term>Yarrowia (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide salicylique (métabolisme)</term>
<term>Cyclopentanes (métabolisme)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Gene Ontology (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Malus (enzymologie)</term>
<term>Malus (génétique)</term>
<term>Malus (microbiologie)</term>
<term>Malus (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Oxylipines (métabolisme)</term>
<term>Penicillium (physiologie)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéome (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Transcriptome (génétique)</term>
<term>Transduction du signal (MeSH)</term>
<term>Yarrowia (physiologie)</term>
<term>Électrophorèse bidimensionnelle sur gel (MeSH)</term>
<term>Éthylènes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclopentanes</term>
<term>Ethylenes</term>
<term>Oxylipins</term>
<term>Plant Proteins</term>
<term>Proteome</term>
<term>Salicylic Acid</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Malus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Malus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Malus</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Malus</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Malus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Malus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Malus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide salicylique</term>
<term>Cyclopentanes</term>
<term>Facteurs de transcription</term>
<term>Malus</term>
<term>Oxylipines</term>
<term>Protéines végétales</term>
<term>Protéome</term>
<term>Éthylènes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Penicillium</term>
<term>Yarrowia</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Penicillium</term>
<term>Yarrowia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electrophoresis, Gel, Two-Dimensional</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Ontology</term>
<term>Genes, Plant</term>
<term>Models, Biological</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gene Ontology</term>
<term>Gènes de plante</term>
<term>Modèles biologiques</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transduction du signal</term>
<term>Électrophorèse bidimensionnelle sur gel</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A better understanding of the mode of action of postharvest biocontrol agents on fruit surfaces is critical for the advancement of successful implementation of postharvest biocontrol products. This is due to the increasing importance of biological control of postharvest diseases over chemical and other control methods. However, most of the mechanisms involved in biological control remain unknown and need to be explored. Yarrowia lipolytica significantly inhibited blue mold decay of apples caused by Penicillium expansum. The findings also demonstrated that Y. lipolytica stimulated the activities of polyphenoloxidase, peroxidase, chitinase, l-phenylalanine ammonia lyase involved in enhancing defense responses in apple fruit tissue. Proteomic and transcriptomic analysis revealed a total of 35 proteins identified as up- and down-regulated in response to the Y. lipolytica inducement. These proteins were related to defense, biotic stimulus, and stress responses, such as pathogenesis-related proteins and dehydrin. The analysis of the transcriptome results proved that the induced resistance was mediated by a crosstalk between salicylic acid (SA) and ethylene/jasmonate (ET/JA) pathways. Y. lipolytica treatment activated the expression of isochorismate synthase gene in the SA pathway, which up-regulates the expression of PR4 in apple. The expression of 1-aminocyclopropane-1-carboxylate oxidase gene and ET-responsive transcription factors 2 and 4, which are involved in the ET pathway, were also activated. In addition, cytochrome oxidase I, which plays an important role in JA signaling for resistance acquisition, was also activated. However, not all of the genes had a positive effect on the SA and ET/JA signal pathways. As transcriptional repressors in JA signaling, TIFY3B and TIFY11B were triggered by the yeast, but the gene expression levels were relatively low. Taken together, Y. lipolytica induced the SA and ET/JA signal mediating the defense pathways by stimulating defense response genes, such as peroxidase, thaumatin-like protein, and chitinase 4-like, which are involved in defense response in apple. [Formula: see text]</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28398122</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>06</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>06</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0894-0282</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>30</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2017</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>Molecular plant-microbe interactions : MPMI</Title>
<ISOAbbreviation>Mol Plant Microbe Interact</ISOAbbreviation>
</Journal>
<ArticleTitle>Investigating Proteome and Transcriptome Defense Response of Apples Induced by Yarrowia lipolytica.</ArticleTitle>
<Pagination>
<MedlinePgn>301-311</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1094/MPMI-09-16-0189-R</ELocationID>
<Abstract>
<AbstractText>A better understanding of the mode of action of postharvest biocontrol agents on fruit surfaces is critical for the advancement of successful implementation of postharvest biocontrol products. This is due to the increasing importance of biological control of postharvest diseases over chemical and other control methods. However, most of the mechanisms involved in biological control remain unknown and need to be explored. Yarrowia lipolytica significantly inhibited blue mold decay of apples caused by Penicillium expansum. The findings also demonstrated that Y. lipolytica stimulated the activities of polyphenoloxidase, peroxidase, chitinase, l-phenylalanine ammonia lyase involved in enhancing defense responses in apple fruit tissue. Proteomic and transcriptomic analysis revealed a total of 35 proteins identified as up- and down-regulated in response to the Y. lipolytica inducement. These proteins were related to defense, biotic stimulus, and stress responses, such as pathogenesis-related proteins and dehydrin. The analysis of the transcriptome results proved that the induced resistance was mediated by a crosstalk between salicylic acid (SA) and ethylene/jasmonate (ET/JA) pathways. Y. lipolytica treatment activated the expression of isochorismate synthase gene in the SA pathway, which up-regulates the expression of PR4 in apple. The expression of 1-aminocyclopropane-1-carboxylate oxidase gene and ET-responsive transcription factors 2 and 4, which are involved in the ET pathway, were also activated. In addition, cytochrome oxidase I, which plays an important role in JA signaling for resistance acquisition, was also activated. However, not all of the genes had a positive effect on the SA and ET/JA signal pathways. As transcriptional repressors in JA signaling, TIFY3B and TIFY11B were triggered by the yeast, but the gene expression levels were relatively low. Taken together, Y. lipolytica induced the SA and ET/JA signal mediating the defense pathways by stimulating defense response genes, such as peroxidase, thaumatin-like protein, and chitinase 4-like, which are involved in defense response in apple. [Formula: see text]</AbstractText>
<CopyrightInformation>Copyright © 2017 The Author(s) This is an open access article distributed under the CC BY-NC-ND 4.0 International license .</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Hongyin</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Liangliang</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>2 Institute of Life Sciences, Jiangsu University.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Yiwen</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Lina</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Xiangfeng</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Qiya</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xiaoyun</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Plant Microbe Interact</MedlineTA>
<NlmUniqueID>9107902</NlmUniqueID>
<ISSNLinking>0894-0282</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005030">Ethylenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>91GW059KN7</RegistryNumber>
<NameOfSubstance UI="C036216">ethylene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015180" MajorTopicYN="N">Electrophoresis, Gel, Two-Dimensional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005030" MajorTopicYN="N">Ethylenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027845" MajorTopicYN="N">Malus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010407" MajorTopicYN="N">Penicillium</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025062" MajorTopicYN="N">Yarrowia</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28398122</ArticleId>
<ArticleId IdType="doi">10.1094/MPMI-09-16-0189-R</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Chen, Liangliang" sort="Chen, Liangliang" uniqKey="Chen L" first="Liangliang" last="Chen">Liangliang Chen</name>
<name sortKey="Sun, Yiwen" sort="Sun, Yiwen" uniqKey="Sun Y" first="Yiwen" last="Sun">Yiwen Sun</name>
<name sortKey="Yang, Qiya" sort="Yang, Qiya" uniqKey="Yang Q" first="Qiya" last="Yang">Qiya Yang</name>
<name sortKey="Zhang, Hongyin" sort="Zhang, Hongyin" uniqKey="Zhang H" first="Hongyin" last="Zhang">Hongyin Zhang</name>
<name sortKey="Zhang, Xiaoyun" sort="Zhang, Xiaoyun" uniqKey="Zhang X" first="Xiaoyun" last="Zhang">Xiaoyun Zhang</name>
<name sortKey="Zhao, Lina" sort="Zhao, Lina" uniqKey="Zhao L" first="Lina" last="Zhao">Lina Zhao</name>
<name sortKey="Zheng, Xiangfeng" sort="Zheng, Xiangfeng" uniqKey="Zheng X" first="Xiangfeng" last="Zheng">Xiangfeng Zheng</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000084 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000084 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28398122
   |texte=   Investigating Proteome and Transcriptome Defense Response of Apples Induced by Yarrowia lipolytica.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28398122" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020